- TeX source:
- \begin{array}{crclcl} & \mathbb{D} &=& \mathbb{R} \cr\cr& 12x^2 \cdot \left(x-1 \right) &=& - \sqrt{144p} \cdot x \cdot \left(x-1 \right) &\vert& + \sqrt{144p} \cdot x \cdot \left(x-1 \right) \cr & 12x^2 \cdot \left(x-1 \right) + \sqrt{144p} \cdot x \cdot \left(x-1 \right) &=& 0 \cr & x \cdot \left(x-1 \right) \cdot \left(12x + \sqrt{144p} \right) &=& 0 &\vert& \text{Satz vom Nullprodukt} \cr \text{Faktor 1:} & x_{1} &=& 0 \cr \cr \text{Faktor 2:} & x_{2} -1 &=& 0 &\vert& +1 \cr & x_{2} &=& 1 \cr \cr \text{Faktor 3:} & 12x_{3} + \sqrt{144p} &=& 0 \cr & 12x_{3} &=& - \sqrt{144p} \cr & 12x_{3} &=& -12 \sqrt{p} &\vert& :12 \cr & x_{3} &=& - \sqrt{p} \cr \cr & \mathbb{L} &=& \left\{- \sqrt{p} ; 0 ; 1 \right\} \end{array}