- TeX source:
- \begin{array}{crclll} & \sqrt{23y^3+4y^2+7y} &=& 0\\& \sqrt{y\left(23y^2+4y+7\right)} &=& 0 \\& \sqrt{y} \cdot \sqrt{23y^2+4y+7} &=& 0 &\vert & \text{Satz vom Nullprodukt}\\\\\text{Faktor 1:} & \sqrt{y} &=& 0 &\vert& ()^2 \\& y &=& 0 \;\in\;\mathbb{D}\\\\\text{Faktor 2:} & \sqrt{23y^2+4y+7} &=& 0 &\vert & ()^2 \\& 23y^2+4y+7 &=& 0 &\vert & :23 \\& y^2+\dfrac{4}{23}y+\dfrac{7}{23} &=& 0 &\vert & \text{p-q-Formel}\\& y_{1,2} &=& -\dfrac{2}{23}\pm\sqrt{\left(-\dfrac{2}{23}\right)^2-\dfrac{7}{23}}\\& y_{1,2} &=& -\dfrac{2}{23}\pm\sqrt{-\dfrac{157}{529}}\end{array}