- TeX source:
- \begin{array}{rclcl} \mathbb{D} &=& \mathbb{R} \cr \cr 1{,}06^{x-1} &=& 2{,}08^x &\vert& \ln() \cr \ln\left(1{,}06^{x-1}\right) &=& \ln\left(2{,}08^x\right) &\vert& \text{3. Logarithmengesetz} \cr (x-1)\ln(1{,}06) &=& x\ln(2{,}08) \cr x\ln(1{,}06)-\ln(1{,}06) &=& x\ln(2{,}08) &\vert& +\ln(1{,}06)-x\ln(2{,}08) \cr x\ln(1{,}06)-x\ln(2{,}08) &=& \ln(1{,}06) \cr x\left(\ln(1{,}06)-\ln(2{,}08)\right) &=& \ln(1{,}06) &\vert& : \left(\ln(1{,}06)-\ln(2{,}08)\right) \cr x &=& \dfrac{\ln(1{,}06)}{\ln(1{,}06)-\ln(2{,}08)} \approx -0{,}09 \cr \cr \mathbb{L} &=& \left\{\dfrac{\ln(1{,}06)}{\ln(1{,}06)-\ln(2{,}08)}\right\} \end{array}