- TeX source:
- \begin{array}{rclcl} z_1 = \sqrt{2}x^3 &=& \dfrac{-1+\sqrt{61}}{2} &\vert& :\sqrt{2} \cr\cr x^3 &=& \dfrac{-1+\sqrt{61}}{2\sqrt{2}} &\vert& \sqrt[3]{} \cr\cr x &=& \sqrt[3]{\dfrac{-1+\sqrt{61}}{\left(\sqrt{2}\right)^3}} \cr\cr x &=& \dfrac{\sqrt[3]{-1+\sqrt{61}}}{\sqrt{2}} \approx 1{,}34 \cr\cr z_2 = \sqrt{2}x^3 &=& \dfrac{-1-\sqrt{61}}{2} &\vert& :\sqrt{2} \cr\cr x^3 &=& \dfrac{-1-\sqrt{61}}{2\sqrt{2}} &\vert& \sqrt[3]{} \cr\cr x &=& \sqrt[3]{\dfrac{-1-\sqrt{61}}{\left(\sqrt{2}\right)^3}} \cr\cr x &=& \dfrac{\sqrt[3]{-1-\sqrt{61}}}{\sqrt{2}} \approx -1{,}46 \cr\cr \mathbb{L} &=& \left\{\dfrac{\sqrt[3]{-1-\sqrt{61}}}{\sqrt{2}}\;;\;\dfrac{\sqrt[3]{-1+\sqrt{61}}}{\sqrt{2}}\right\}\end{array}