TeX source:
\begin{array}{rclcll}\mathbb{D} &=& \mathbb{R} \cr\cr0 &=& \dfrac{e^{x^2}\cdot e^{-2}}{e^x}-1 &\vert& +1 \\1 &=& \dfrac{e^{x^2}\cdot e^{-2}}{e^x} \\1 &=& e^{x^2-2}\cdot e^{-x} \\1 &=& e^{x^2-2-x} &\vert& \ln()\\\ln (1) &=& \ln \left(e^{x^2-2-x}\right) \\0 &=& x^2-x-2 &\vert&\text{p-q-Formel} \\x_{1,2} &=& \dfrac{1}{2}\pm\sqrt{\left(-\dfrac{1}{2}\right)^2+2} \\\\&=& \dfrac{1}{2}\pm\sqrt{\dfrac{9}{4}} \\\\x_1 &=& \dfrac{1}{2}+\dfrac{3}{2} = 2 \\x_2 &=& \dfrac{1}{2}-\dfrac{3}{2} = -1\end{array}