TeX source:
\begin{array}{rclcll}0 &=& \dfrac{1}{\sqrt[4]{x^3}}-\sqrt[3]{x^2} &\vert& +\sqrt[3]{x^2} \\ \\\sqrt[3]{x^2} &=& \dfrac{1}{\sqrt[4]{x^3}} \\ \\x^{\frac{2}{3}} &=& \dfrac{1}{x^{\frac{3}{4}}} &\vert& \cdot x^{\frac{3}{4}} \\x^{\frac{2}{3}}\cdot x^{\frac{3}{4}} &=& 1 \\x^{\frac{17}{12}} &=& 1 &\vert& ()^{\frac{12}{17}} \\x &=& 1\;\in\;\mathbb{D}\end{array}