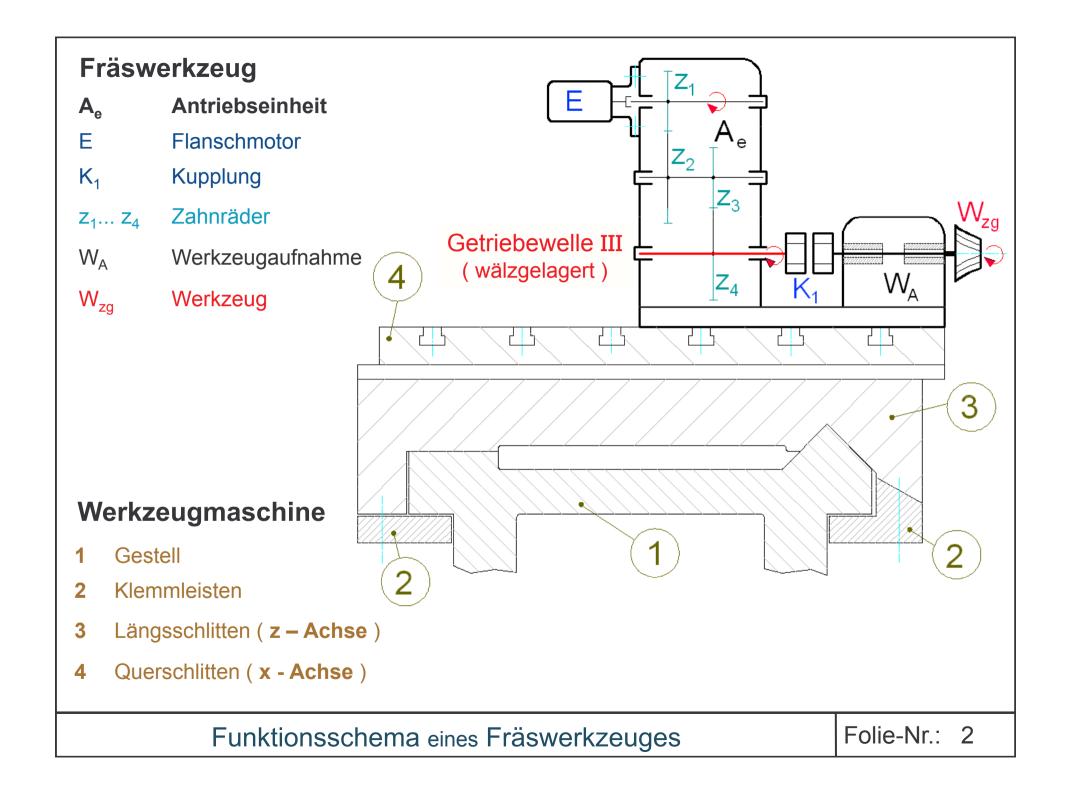
Konstruktion einer Getriebewelle für ein Fräswerkzeug

Vorlesung

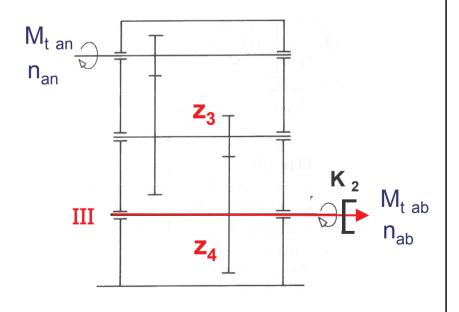

Wildau, den 20.06.2010

von

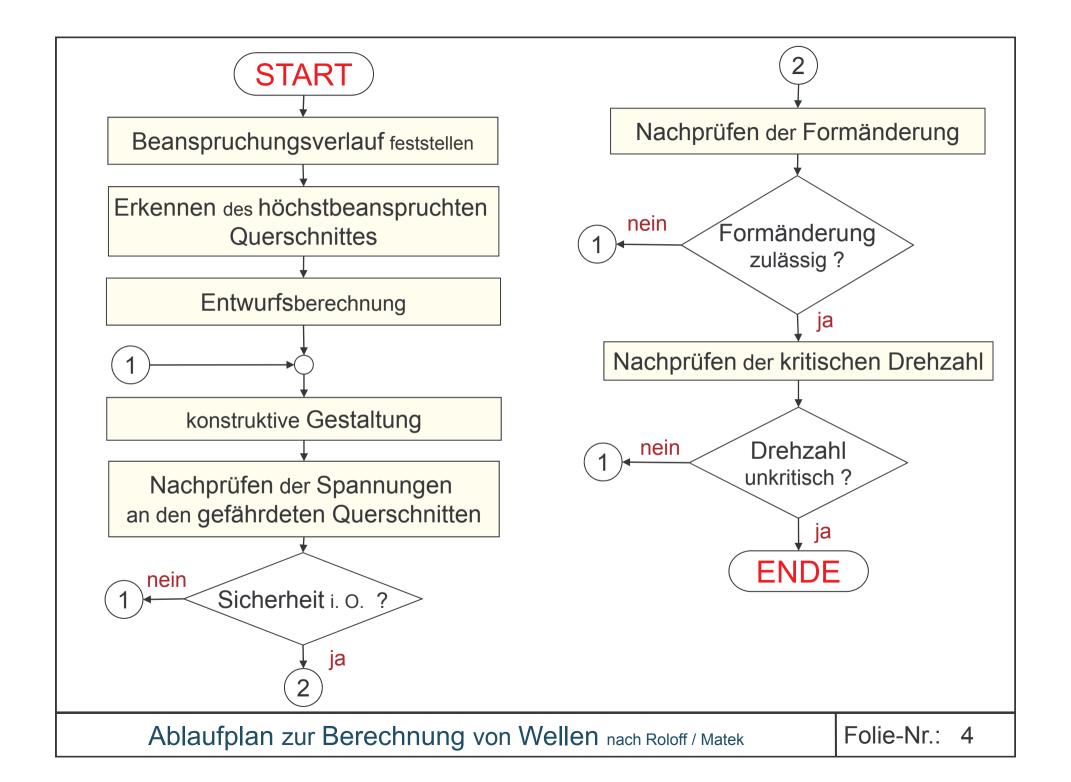
Prof. Dr.-Ing. Norbert Miersch

- 1 Aufgabe präzisieren
- 2 Lagerung und Entwurf
- 3 Gestaltung
- 4 Nachrechnung
- 5 Fertigteilzeichnung
- 6 Zusammenfassung und Ausblick

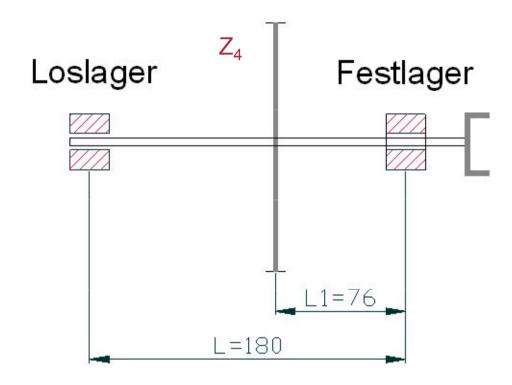
Gliederung des Vortrages



Festlegungen (Getriebewelle III) :


- > Lagerabstand und Kraftangriffspunkte bekannt.
- ➤ Vollwelle dreht in einer Richtung.
- > Zahnrad geradverzahnt.
- ➤ Welle-Nabe-Verbindung ist Passfeder.

weitere Daten (Getriebewelle III):


Werkstoff	E 295 (St 50-2)
N _{ab} (Abtriebsdrehzahl)	1000 min ⁻¹
M _{t ab} (Abtriebsdrehmoment)	120 Nm
F_{t} (Tangentialkraft an z_{4})	1,5 KN
$\alpha = \alpha_w$ (Eingriffswinkel)	20°
K_{A} (Betriebs- und Anwendungsfaktor)	1,3

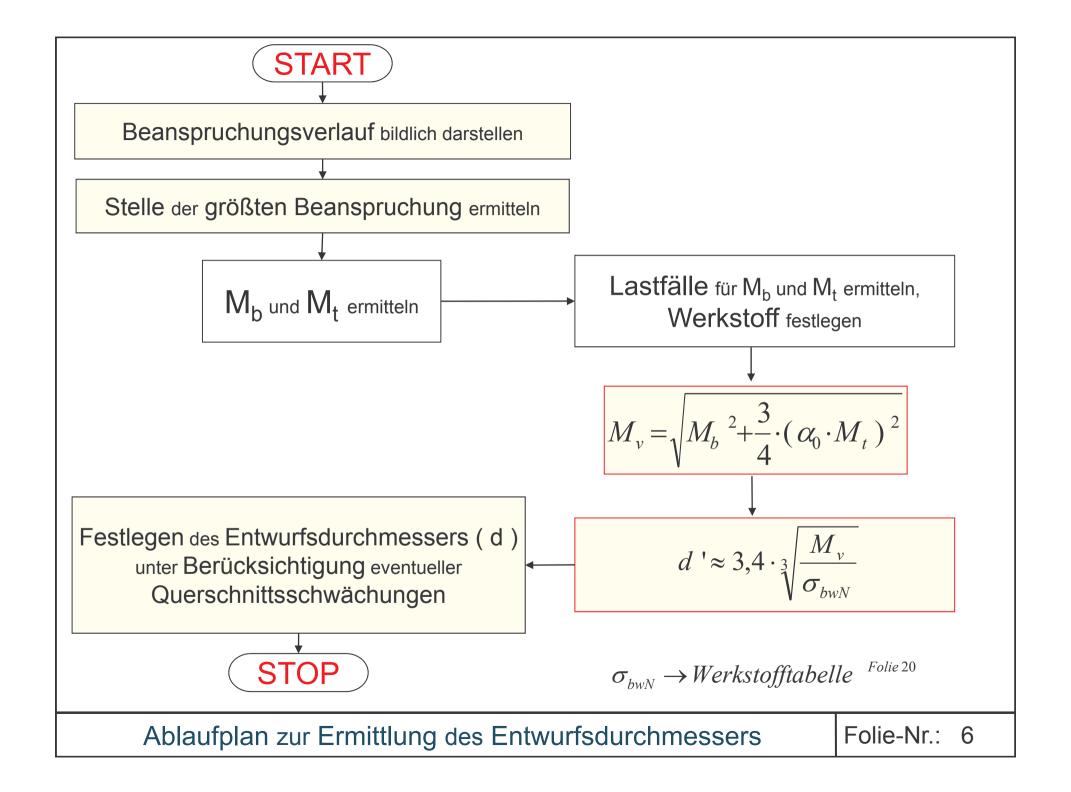
Aufgabe präzisieren

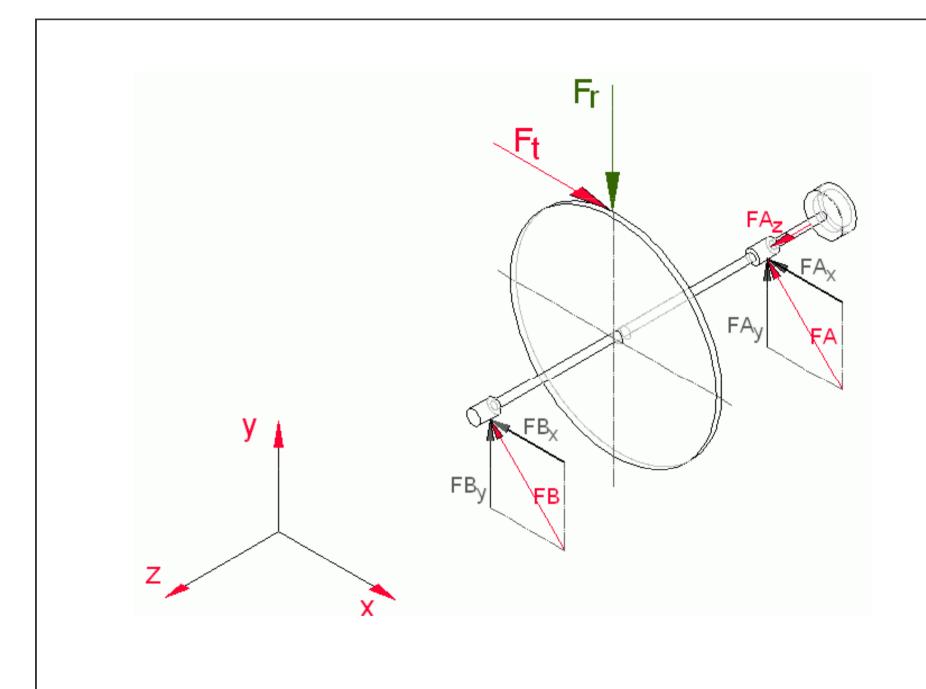
Fest- und Loslagerung für die Getriebewelle

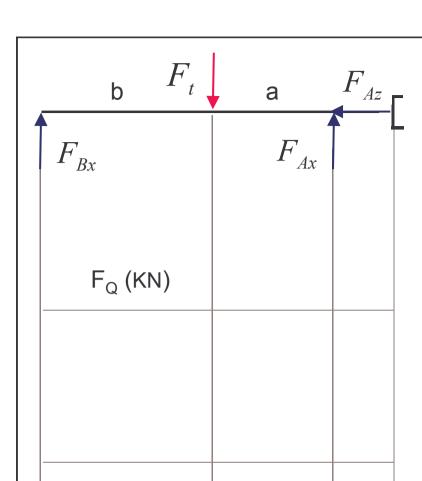
Regel 1:

Eindeutige Lagerung anstreben!

Regel 2:

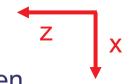

Der Ring mit der Umfangslast muss fest sitzen!


Der Ring mit der Punktlast kann lose sitzen!


Regel 3:

Längenänderungen für Kupplung vermeiden!

Festlegung der Lagerungsart



 M_b (Nm)

 $M_t(Nm)$

Auflagerreaktionen

$$F_{Bx} = \dots = \underline{0,63} \ KN$$

$$F_{Ax} = \dots = 0.87 \text{ KN}$$

Querkräfte

$$F_Q = \dots KN$$

Biegemomente

$$M_{b \max(xz)} = \dots$$

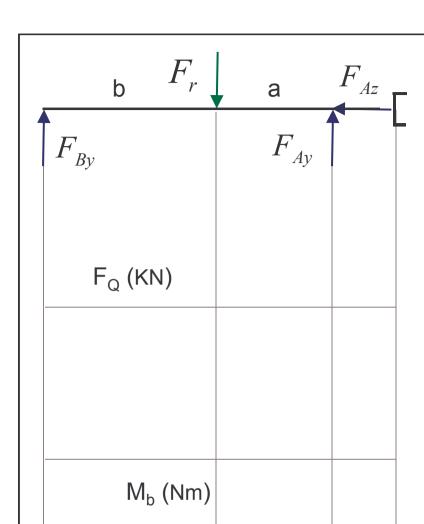
$$\approx \underline{66} Nm$$

Torsionsmomente

$$M_t = 120 Nm$$

Ergänzungen:

a = 76 mm


b = 104 mm

I = a + b

I = 180 mm

 $F_{t} = 1.5 \text{ KN}$

Beanspruchungsverlauf festlegen (bildlich darstellen) xz - Ebene

 M_t (Nm)

Z

Auflagerreaktionen

$$F_{By} = \dots = \underline{0.23} \ KN$$

$$F_{Ay} = \dots = 0.32 \ KN$$

Querkräfte

$$F_{O} = \dots KN$$

Biegemomente

$$M_{b \max(yz)} = \dots$$

$$\approx \underline{24} Nm$$

Torsionsmomente

$$M_t = 120 Nm$$

Ergänzungen:

$$a = 76$$
 mm

$$b = 104 \text{ mm}$$

$$I = a + b$$

$$F_r = 0.55 \text{ KN}$$

Beanspruchungsverlauf festlegen (bildlich darstellen) yz - Ebene

1.
$$M_{bres} = \sqrt{M_{b \max(xz)}^2 + M_{b \max(yz)}^2}$$

 $M_{bres} = 70.5 Nm$

Ergänzungen:

$$\sigma_{bwN} = 245 \ N / mm^2$$

$$(E \ 295^{Folie \ 20})$$

2.
$$M_v = \sqrt{M_{b res}^2 + 0.4 \cdot M_t^2}$$

 $M_v = 103.2 \ Nm$

$$M_t = 120 Nm$$

3.
$$d' \ge 3,4 \cdot \sqrt[3]{\frac{M_v}{\sigma_{bwN}}} = 25,5 \, mm$$

$$t_1 = 4 mm$$

$$d = d' + t_1 = 29,5 \text{ mm}$$

$$d_{gewählt} = 30 \text{ mm}$$
(Vorzugsreihe n. Tabelle)

> Beanspruchungsgerecht

Gestaltfestigkeit

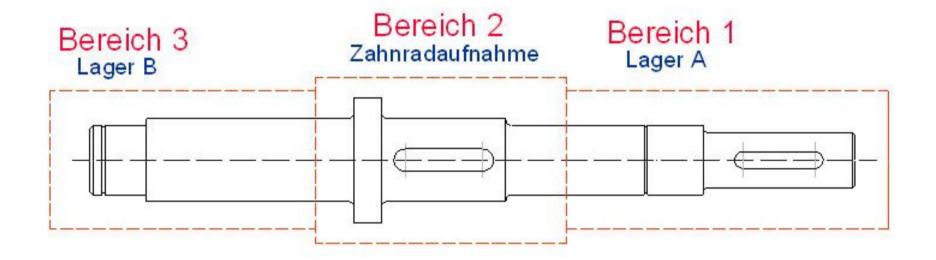
Funktionsgerecht
Steifigkeit

> Werkstoffgerecht

Werkstoffauswahl

> Fertigungsgerecht

Werkzeugauslauf


> Standardisierungsgerecht

Vorzugsreihen

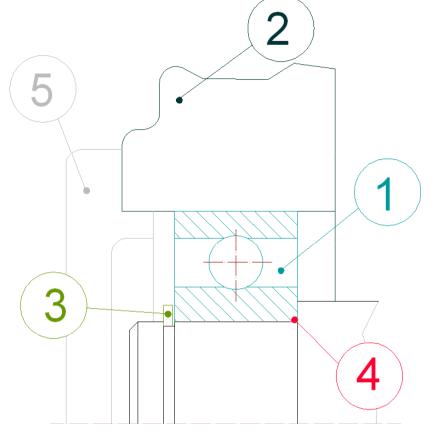
Wartungsgerecht

Wartungszyklen

Hinweise zur Orientierung für die Gestaltung

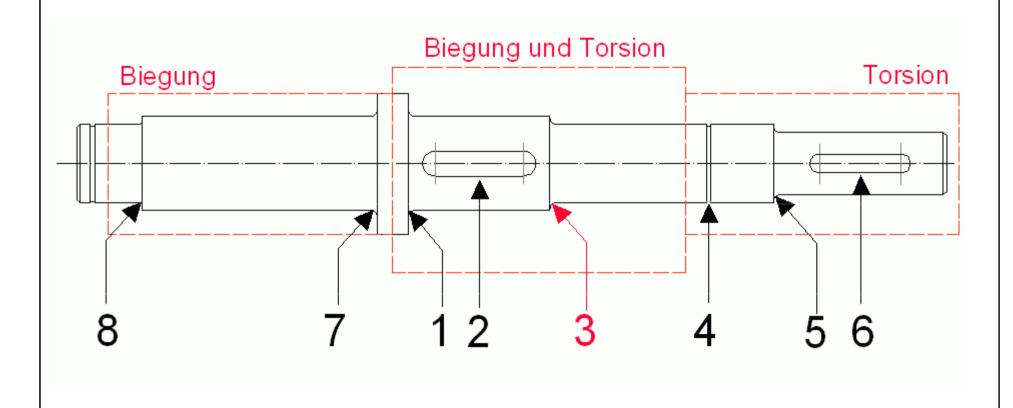
Gestaltung der Getriebewelle - Übersicht

- 1... Rillenkugellager DIN 625 - 6205 L_h = 144 000 h
- 2... Gehäuse
- 3... Wellensicherungsring DIN 471 25 x 1,2



 $R \ \leq r_{smin}$

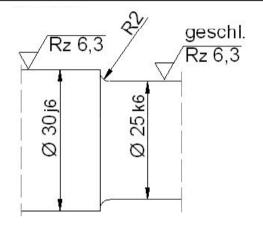
bzw.


Freistich DIN 509 – H1 x 0,2

5... Deckel

Gestaltung der Getriebewelle – Bereich 3

Bereiche der gefährdeten Querschnitte

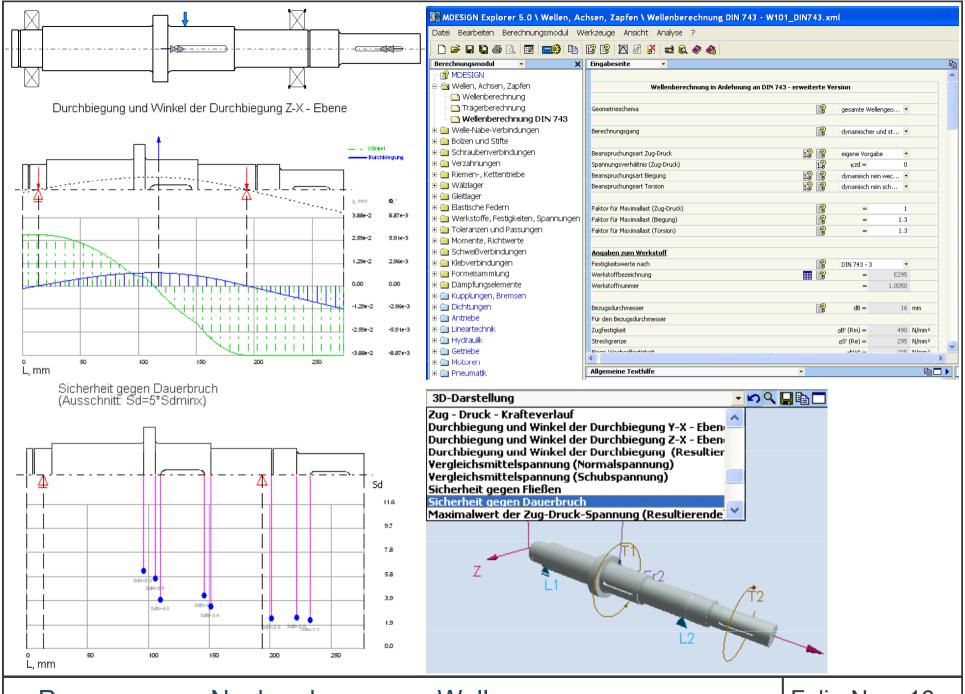

Aufzeigen gefährdeter Querschnitte

statischer Festigkeitsnachweis

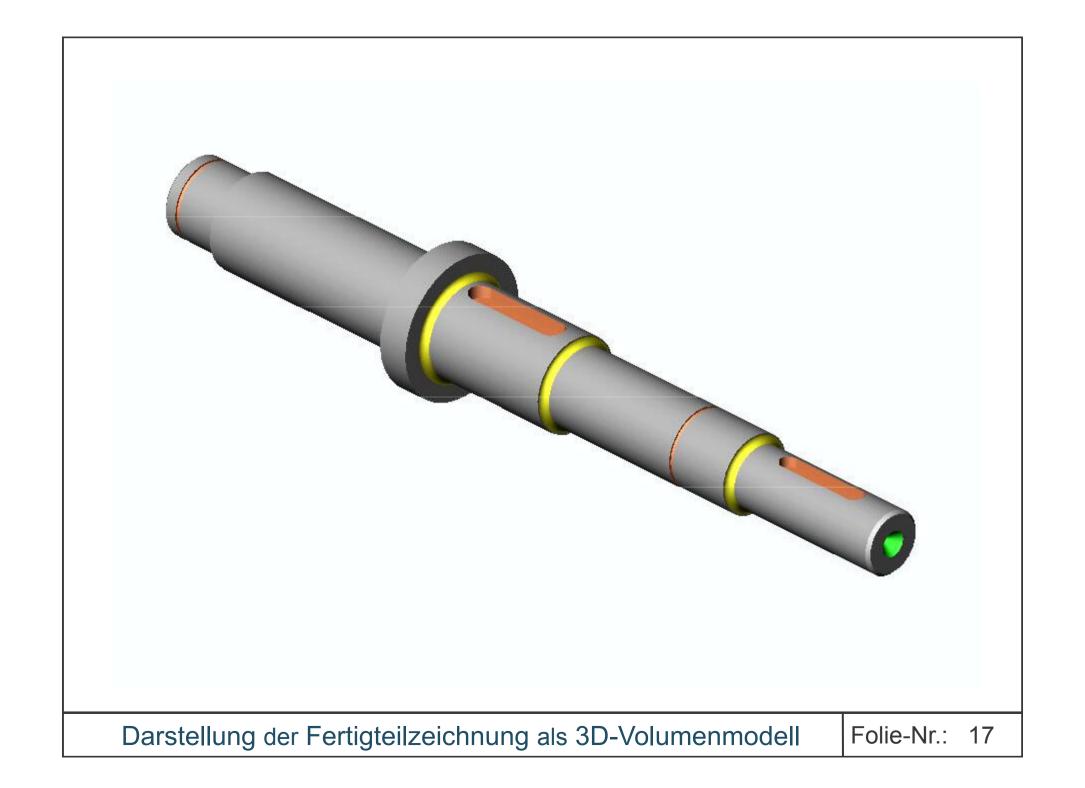
(Sicherheit gegen Fließen)

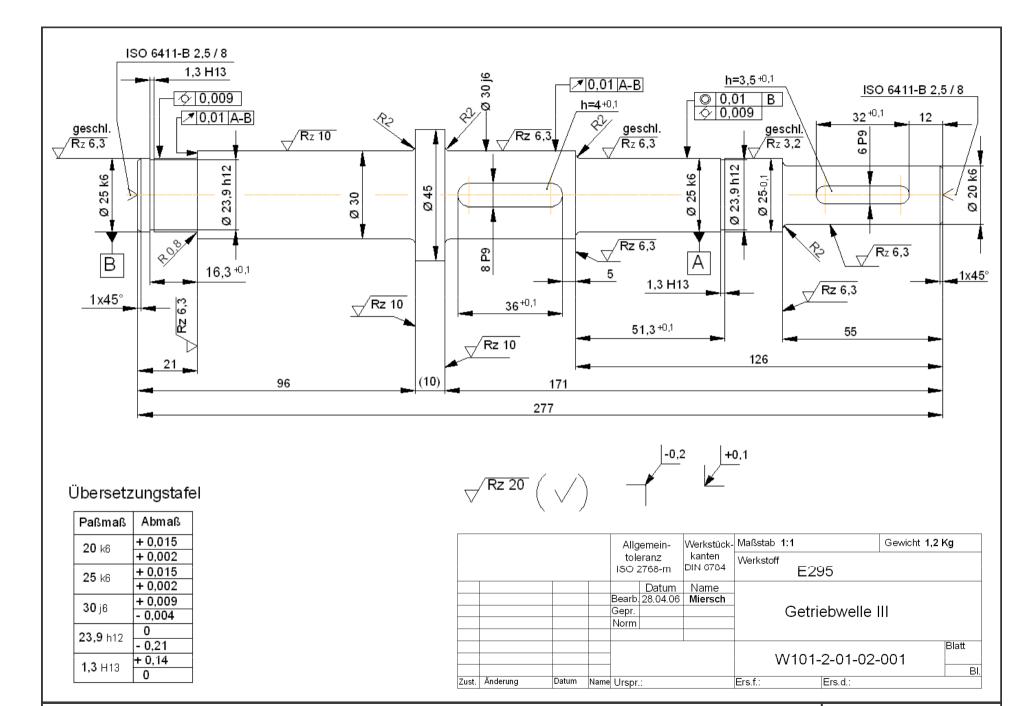
dynamischer Festigkeitsnachweis

(Sicherheit gegen Dauerbruch)

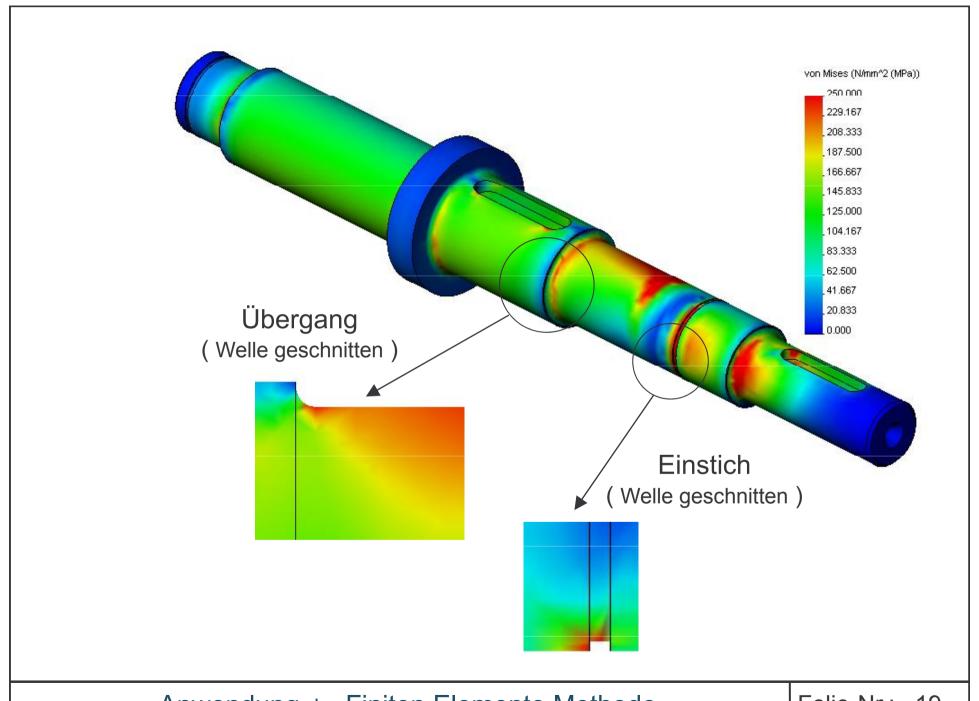


$$S_{F} = \frac{1}{\sqrt{\left(\frac{\sigma_{b \max}}{\sigma_{bF}}\right)^{2} + \left(\frac{\tau_{t \max}}{\tau_{tF}}\right)^{2}}}$$


$$S_D = \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{GW}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{GW}}\right)^2}}$$

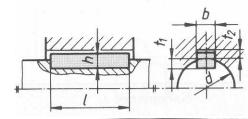

$$S_{F \, erf} = 1.5 < S_{F \, vorh} = 3.5$$

$$S_{D erf} = 1.8 < S_{D vorh} = 3$$



Programm zur Nachrechnung von Wellen MDESIGN V 5 (TEDATA GmbH)

Darstellung der Fertigteilzeichnung als 2D-Werkstattzeichnung


Anwendung der Finiten Elemente Methode

TB 1-1 Stahlauswahl für den allgemeinen Maschinenbau

Festigkeitskennwerte in N/mm² für die Normabmessung $d_{\rm N}$ Schwingfestigkeitswerte nach DIN 743-2¹⁾²⁾ (Richtwerte) Elastizitätsmodul $E=210\,000\,{\rm N/mm^2}$, Schubmodul $G=81\,000\,{\rm N/mm^2}$

Sta Kurzname	ahlsorte Werkstoff- nummer	A % min.	R _{mN} min.	R _{eN} R _{p0,2N} min.	$\sigma_{zdWN} \over (\sigma_{zdSchN})$	σ _{bWN} (σ _{bSchN})	$\tau_{tWN} \atop (\tau_{tSchN})$	relative Werkstoff- kosten ³⁾	Eigenschaften und Verwendungsbeispiele	
a) Unlegierte Baustäh Normabmessung dy		, nach D	IN EN 10	025	11.748				Warmgewalzte, unlegierte C litätsstähle ohne Eignung z handlung, die durch Zugfes Streckgrenze gekennzeichn Verwendung bei Umgebun, geschweißten, genieteten un Bauteilen bestimmt sind	ur Wärmebe- stigkeit und et und für die estemperatur in
\$185	1.0035	18	310	185					untergeordnete Bauteile be spruchung: Geländer, Trepp Schweißeignung nicht gewä	pen u. dgl.;
\$235JR \$235JRG1 \$235JRG2 \$235JO \$235J2G3 \$235J2G4	1.0037 1.0036 1.0038 1.0114 1.0116 1.0117	26	360	235	140 (225)	180 (270)	105 (160)	1	üblicher Stahl im Maschinen- und Stahlbau bei mäßiger Beanspruchung: Flacherzeug- nisse, Stab- und Formstähle: gut bearbeit- bar; Schweißeignung und Zähigkeit verbes- sern sich stetig von der Gütegruppe JR bis zur Gütegruppe J2G4	
\$275JR \$275JO \$275J2G3 \$275J2G4	1.0044 1.0143 1.0144 1.0145	22	430	275	170 (270)	215 (320)	125 (190)	1,05	mäßig beanspruchte Bauteile; Wellen, Achsen, Hebel; gut bearbeitbar, gute Schweißeignung	
\$355JR \$355JO \$355J2G3 \$355J2G4 \$355K2G3 \$355K2G4	1.0045 1.0553 1.0570 1.0577 1.0595 1.0596	22	510	355	205 (325)	255 (380)	150 (245)		hoch beanspruchte Tragwerke im Stahl-, Kran- und Brückenbau; hohe Streckgrenze durch Si- und Mn-Gehalte; Schweißeignung und Sprödbruchsicherheit verbessern sich stetig von der Gütegruppe JR bis zur Güte- gruppe K2G4	
E295	1.0050	20	490	295	195 (295)	245 (355)	145 (205)	1,1	gut bearbeitbar; meist verwendeter Stahl bei mittlerer Beanspruchung; Wellen, Achsen, Bolzen	
E335	1.0060	16	590	335	235 (335)	290 (400)	180 (230)	1,7	für höher beanspruchte verschleißfeste Teile; Wellen, Ritzel, Spindeln	Maschinenbau- stahl ohne be- sondere Anfor- derungen an
E360	1.0070	11	690	360	275 (360)	345 (430)	205 (250)		höchst beanspruchte ver- schleißfeste Teile in na- turhartem Zustand; Nok- ken, Walzen, Gesenke, Steuerungsteile	

Passfedern DIN 6885.T1

Wellen-	Nutenkeile und Federn						
durch-		Wellen-	Nabennuttiefe für				
messer	Breite	Nuttiefe	Keile	Federn			
d	×						
	Höhe						
über bis	$b \times h$	t_1	t ₂	12			
10 12	4 × 4	2,5	1,2	1,8			
12 17	5 × 5	3	1,7	2,3			
17 22	6 es 6	3,5	2,2	2,8			
22 30	8 × 7	4	2,4	3,3			
30 38	10 × 8	5	2,4	3,3			
38 44	12 × 8	5	2,4	3,3			
44 50	14 × 9	5,5	2,9	3,8			
	16 × 10	6	3,4	4,3			
50 58 58 65	18 × 11	7	3,4	4,4			
65 75	20×12	7,5	3,9	4,9			
			· · · · · · · · · · · · · · · · · · ·	5,4			
75 85	22 × 14	9	4,4 4,4	5,4			
85 95	25 × 14		5,4	6,4			
95110	28 × 16	10	J,4	0,4			

Passfederlängen 8; 10; 12; 14; 16; 18; 20;

22; 25; 28; 32; 36; 40; 45;

50; 56; 63; 70; 80; 90;

100; 110; 125; 140; 160;

180; 200; 220; 150; 280;

320; 360; 400

Passfederkennwerte

Werkstoffkennwerte ausgewählter Werkstoffe

Durchmesser d

6; 7; 8; 9; 10; 11; 12; 14; 16; 19; 20; 22; 24; 25; 28; 30; 32; 35; 38; 40; 42; 45; 48; 50; 55; 60; 65; 70; 75; 80

Vorzugsreihe für Wellendurchmesser

Nur für Unterrichtszwecke Alle Rechte vorbehalten

Tabellensammlung Auszüge aus Tabellenbuch Roloff / Matek